Testing the measurability of steel sections with terrestrial laser scanners

  • Arpad SOMOGYI Budapest University of Technology and Economics, Faculty of Civil Engineering, Department of Photogrammetry and Geoinformatics, Műegyetem rkp. 3., H-1111 Budapest https://orcid.org/0000-0002-7247-4470
  • Akos SZABO-LEONE 4iG PLC, Montevideo u. 8, H-1037, Budapest
  • Tamás LOVAS Budapest University of Technology and Economics, Faculty of Civil Engineering, Department of Photogrammetry and Geoinformatics, Műegyetem rkp. 3., H-1111 Budapest https://orcid.org/0000-0001-6588-6437
Keywords: TLS, steel section, geometry, measurement

Abstract

When assessing the health of steel structures, capturing, and modelling the geometry is especially important. Point cloud-based technologies have special requirements; previous studies revealed certain challenges that are to be resolved. In this paper, we aimed to develop a method to investigate the effects that the surface reflectance, incidence angle, and distance have on the quality of the point cloud of steel sections. A controlled environment was established for the research, where three terrestrial laser scanners were used to measure four different steel specimens. For validation, we also made reference measurements with a structured light scanner. Due to a large amount of data, a workflow with own routines has been developed for processing the prepared measurement datasets. For standard steel sections, the comparative study clearly showed a significant influence of the section shape, resulting in occlusion and unfavorable incidence angles. Of the devices tested, the one de-signed for high-precision measurements showed the intensity highlighting phenomenon for highly reflective surfaces, however, the measurements demonstrate that with careful selection of measurement conditions and a few pre-processing steps, the technology is well suited for the assessment of steel structures.

Downloads

Download data is not yet available.

References

Amir Y, Thörnberg B (2017). High precision laser scanning of metallic surfaces. International Journal of Optics 4134205. https://doi.org/10.1155/2017/4134205

Berényi A, Lovas T, Barsi Á (2010). Terrestrial laser scanning - civil engineering applications. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences 38:80-85. https://www.isprs.org/proceedings/XXXVIII/part5/papers/61.pdf

Boesemann W, Godding R, Huette H (2000). Photogrammetric measurement techniques for quality control in sheet metal forming. International Archives of Photogrammetry and Remote Sensing 33(5). https://isprs.org/proceedings/XXXIII/congress/part5/291_XXXIII-part5.pdf

Breuckmann (2011). smartSCAN 3D-HE Data Sheet. Retrieved from 3dtoday: https://3dtoday.ru/upload/iblock/7ac/36_Data_sheet_smartSCAN_HE_1.4_06_2011.pdf

Burdziakowski P, Zakrzewska A (2021). A new adaptive method for the extraction of steel design structures from an integrated point cloud. Sensors 21(10):3416. https://doi.org/10.3390/s21103416

Cabaleiro M, Riveiro B, Arias P, Caamaño J, Vilán J (2014). Automatic 3D modelling of metal frame connections from LiDAR data for structural engineering purposes. ISPRS Journal of Photogrammetry and Remote Sensing 96:47-56. https://doi.org/10.1016/j.isprsjprs.2014.07.006

Fan L, Smethurst JA, Atkinson PM, Powrie W (2015). Error in target-based georeferencing and registration in terrestrial laser scanning. Computers & Geosciences 83:54-64. https://doi.org/10.1016/j.cageo.2015.06.021

Gross H, Jutzi B, Thoennessen U (2008). Intensity normalization by incidence angle and range of full-waveform lidar data. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences 37:405-412.

Guarnieri A, Fissore F, Masiero A, Vettore A (2017). From TLS survey to 3D solid modeling for documentation of built heritage: The case study of Porta Savonarola in Padua. The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences 42:303-308. https://doi.org/10.5194/isprs-archives-XLII-2-W5-303-2017

Julin A, Kurkela M, Rantanen T, Virtanen J-P, Maksimainen M, Kukko A, Kaartinen H, Vaaja MT, Hyyppä J, Hyyppä H (2020). Evaluating the quality of TLS point cloud colorization. Remote Sensing 12(17):2748. https://doi.org/10.3390/rs12172748

Kaasalainen S, Ahokas E, Hyyppa J, Suomalainen J (2005). Study of surface brightness from backscattered laser intensity: Calibration of laser data. IEEE Geoscience and Remote Sensing Letters 2(3):255-259. https://doi.org/10.1109/LGRS.2005.850534

Kersten T, Mechelke K, Lindstaedt M, Sternberg H (2008). Geometric accuracy investigations of the latest terrestrial laser scanning systems. FIG Working Week, Stockholm, Sweden: Integrating Generations pp 14-19.

Leica Geosystems (2011). HDS7000 Laser Scanner. Retrieved 2020 October 10 from http://w3.leica-geosystems.com/downloads123/hds/hds/HDS7000/brochures-datasheet/HDS7000_DAT_en.pdf

Leica Geosystems (2022). Leica RTC360 3D Reality Capture Solution. Retrieved 2022 March 17 from https://leica-geosystems.com/-/media/files/leicageosystems/products/datasheets/leica-rtc360-ds.ashx

Mathworks (2015). Mathworks Help Center. (Mathworks) Retrieved 2020 November 10 from https://www.mathworks.com/help/vision/ref/pcfitplane.html

Oniga VE, Breaban AI, Alexe EI, Văsii C (2021). Indoor mapping of a complex cultural heritage scene using TLS and HMLS laser scanning. The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences 43:605-612. https://doi.org/10.5194/isprs-archives-XLIII-B2-2021-605-2021

Quattrini R, Malinverni E, Clini P, Nespeca R, Orlietti E (2015). From TLS to HBIM: high quality semantically-aware 3D modeling of complex architecture. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences 5:367-374. https://doi.org/10.5194/isprsarchives-XL-5-W4-367-2015

Roca-Pardiñas J, Argüelles-Fraga R, de Asís López F, Ordóñez C (2014). Analysis of the influence of range and angle of incidence of terrestrial laser scanning measurements on tunnel inspection. Tunnelling and Underground Space Technology 43:133-139. https://doi.org/10.1016/j.tust.2014.04.011

Sánchez-Aparicio LJ, Del Pozo S, Ramos L, Arce A, Fernandes FM (2018). Heritage site preservation with combined radiometric and geometric analysis of TLS data. Automation in Construction 85:24-39. https://doi.org/10.1016/j.autcon.2017.09.023

Somogyi Á, Lovas T (2017). BIM modellezés lézerszkennelés támogatásával [Supporting BIM by Terrestrial Laser Scanning]. Geodézia és Kartográfia 2(68):10-14.

Soudarissanane S, Lindenbergh R, Menenti M, Teunissen PJG (2009). Incidence angle influence on the quality of terrestrial laser scanning points. In: Bretar F, Pierrot-Deseilligny M, Vosselman G (Eds). Proceedings ISPRS Workshop Laserscanning 2009, 1-2 September 2009, Paris, France 38:183-188.

Soudarissanane S, Van Ree J, Bucksch A, Lindenbergh, R (2007). Error budget of terrestrial laser scanning: Influence of the incidence angle on the scan quality. In: Proceedings of the 3D-NordOst, Berlin, Germany, 7 December 2007 pp 1-8.

Suchocki C (2020). Comparison of time-of-flight and phase-shift TLS intensity data for the diagnostics measurements of buildings. Materials 13(2):353. https://doi.org/10.3390/ma13020353

Surphaser Software Basis (2017). Surphaser 3D Laser Scanners - Surphaser 400. Retrieved 2020 October 10 from http://www.surphaser.com/pdf/Surphaser%20400.pdf

Tan K, Zhang W, Shen F, Cheng X (2018). Investigation of TLS intensity data and distance measurement errors from target specular reflections. Remote Sensing 10(7):1077. https://doi.org/10.3390/rs10071077

Voegtle T, Schwab I, Landes T (2008). Influences of different materials on the measurements of a terrestrial laser scanner (TLS). Proceedings of the XXI Congress, The International Society for Photogrammetry and Remote Sensing, 37:1061-1066.

Voegtle T, Wakaluk S (2009). Effects on the measurements of the terrestrial laser scanner HDS 6000 (Leica) caused by different object materials. In: Bretar F, Pierrot-Deseilligny M, Vosselman G (Eds). Laser scanning 2009, IAPRS Proceedings of ISPRS, Paris, France, September 1-2, 38:68-74.

Published
2022-12-28
How to Cite
SOMOGYI, A., SZABO-LEONE, A., & LOVAS, T. (2022). Testing the measurability of steel sections with terrestrial laser scanners. Nova Geodesia, 2(4), 66. https://doi.org/10.55779/ng2466
Section
Research articles
CITATION
DOI: 10.55779/ng2466