Enhanced geoid modelling in local geodetic networks: Comparative analysis of Least Squares Collocation techniques
DOI:
https://doi.org/10.55779/ng51252Keywords:
covariance models, geoidal height, least square collocation, nonstationary, stationary, varied terrainAbstract
The geoid is an equipotential surface of the Earth’s gravity field that closely approximates mean sea level in a least-squares sense. Meanwhile, this study aims to enhance local geoid modeling by comparing the Stationary (SLSC) and Non-Stationary Least Squares Collocation (NSLSC) techniques in Akure South and Gombe, Nigeria. Performance evaluation of the techniques, including comparison of SLSC and NSLSC approaches using three (Gaussian, Exponential, and Matern) covariance models and statistical (MANOVA) analysis, was carried out. In the Akure study area, Matern covariance model, though requiring longer processing time, has proved to be the best-fit (optimum) model for the application of SLSC and NSLSC techniques with standard deviations of 1.711825 m and 1.711782 m respectively. Also, using the GGM dataset for both approaches, the standard deviations for both approaches yielded 1.538476 m and 1.538454 m respectively. Furthermore, using the DEM dataset for both approaches, the standard deviations for both approaches yielded 0.943200 m and 0.943198 m respectively. However, in the Gombe study area, using terrestrial datasets, the Gaussian function proved to be the best-fit (optimum) model yielding the standard deviations of 0.352219 m and 0.352564 m for SLSC and NSLSC techniques, respectively. The results obtained from the GGM datasets yielded standard deviations of 0.340943 m and 0.338443 m for the SLSC and NSLSC techniques, respectively, while the DEM datasets produced standard deviations of 0.352285 m and 0.352496 m for the two techniques, respectively. The findings suggest that NSLSC is better suited for geoid determination in mountainous terrains like Akure South due to its flexibility, while SLSC is computationally more efficient for gently rolling terrains such as Gombe.
Metrics
References
Abd-Elmotaal HA (1998). An efficient technique for the computation of gravimetric quantities from geopotential Earth models. In: Forsberg R, Feissel M, Dietrich R (Eds). Geodesy on the Move. International Association of Geodesy Symposia Vol 119. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-72245-5_25
Al-Ajami H, Zaki A, Rabah M, El-Ashquer M (2022). A high-resolution gravimetric geoid model for Kuwait using the least-squares collocation. Frontiers in Earth Science 9:753269. https://doi.org/10.3389/feart.2021.753269
Alberts BA, Ditmar P, Klees R (2007). A new methodology to process airborne gravimetry data: advances and problems. In: Tregoning P, Rizos C (Eds). Dynamic Planet. International Association of Geodesy Symposia, Vol 130, 251-258. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-49350-1_38
Ayeni OO (1981). Statistical adjustment and analysis of data: (with applications in geodetic surveying and photogrammetry). Lagos: University of Lagos.
Barthelmes F (2018). Global Models. In: Grafarend E (Ed). Encyclopedia of Geodesy. Encyclopedia of Earth Sciences Series. Springer, Cham. https://doi.org/10.1007/978-3-319-02370-0_43-2
Collier P, Argeseanu V, Leahy F (1998). Distortion modeling and the transition to GDA94. Australian Surveyor 43(1):29-40. https://doi.org/10.1080/00050347.1998.10558718
Dagogo MJ, Francis F, Christian UE (2014). Fundamentals of Geodesy. Textbook. Published by Concept Publications Limited. 77, Shipeolu Street, Palm Grove, Lagos, Nigeria.
Darbeheshti N, Featherstone WE (2009). Non-stationary covariance function modeling in 2D least-squares collocation. Journal of Geodesy 83(6):495-508. https://doi.org/10.1007/s00190-008-0267-0
Darbeheshti N, Featherstone WE (2010). Tuning a gravimetric quasi geoid to GPS-levelling by non-stationary least-squares collocation. Journal of Geodesy 84(7):419-431. https://doi.org/10.1007/s00190-010-0377-3
Denker H, Torge W, Wenzel G, Ihde J, Schirmer U (2000). Investigation of different methods for the combination of gravity and GPS/levelling data. In: Schwarz KP (Ed). Geodesy Beyond 2000. International Association of Geodesy Symposia, Vol 121. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-59742-8_23
Duquenne H, Everaerts M, Lambot P (2005). Merging a gravimetric model of the geoid with GPS/Levelling data: An example in Belgium. In: Jekeli C, Bastos L, Fernandes J (Eds). Gravity, Geoid and Space Missions. International Association of Geodesy Symposia, Vol 129. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-26932-0_23
El-Ashquer M, Elsaka B, El-Fiky G (2017). EGY-HGM2016: an improved hybrid local geoid model for Egypt based on the combination of GOCE-based geopotential model with gravimetric and GNSS/leveling measurements. Arabian Journal of Geosciences 10:251. https://doi.org/10.1007/s12517-017-3042-9 10 53115
Ezeigbo CU (1988). Least squares collocation method for geoid and datum determination for Nigeria. PhD Thesis, Department of Surveying, University of Lagos, Nigeria.
Featherstone W (1998). Do we need a gravimetric geoid or a model of the Australian height datum to transform GPS heights in Australia? Australian Surveyor 43(4):273-280. https://doi.org/10.1080/00050350.1998.10558758
Forsberg R (1987). A new covariance model for inertial gravimetry and gradiometry. Journal of Geophysical Research: Solid Earth 92(B2):1305-1310. https://doi.org/10.1029/jb092ib02p01305
Goad CC, Tscherning CC, Chin MM (1984). Gravity empirical covariance values for the continental United States. Journal of Geophysical Research: Solid Earth 89(B9):7962-7968. https://doi.org/10.1029/jb089ib09p07962
Goli M, Foroughi I, Novák P (2019). Application of the one-step integration method for determination of the regional gravimetric geoid. Journal of Geodesy 93(9):1631-1644. https://doi.org/10.1007/S00190-019-01272-8
Guimarães GD, Blitzkow D, Barzaghi R, Matos AC (2014). The computation of the geoid model in the state of Sao Paulo using two methodologies and GOCE models. Boletim de Ciências Geodésicas 20(1):183-203. https://doi.org/10.1590/s1982-21702014000100012
Heiskanen W, Moritz H (1967). Physical Geodesy. Freeman & Co, San Francisco.
Higdon D, Swall J, Kern J (1999). Non-stationary spatial modeling, Bayesian Statistics 6(1):761-768. https://doi.org/10.48550/arXiv.2212.08043
ICGEM (2024). IGEM. Retrieved 24 January 2024 from http://icgem.gfz-potsdam.de/home
Idowu TO (2006). Prediction of gravity anomalies for geophysical exploration. FUTY Journal of the Environment 1(1):44-55. https://doi.org/10.4314/fje.v1i1.50776
Idowu TO, Nwilo PC, Fajemirokun FA, Ezeigbo CU (2008). Determination of optimum residual gravity anomalies for mineral exploration: A least squares collocation approach. Survey Review 40(309):294-303. https://doi.org/10.1179/003962608x325367
Kearsley W (1977). The estimation of mean gravity anomalies at sea from other geophysical phenomena. Ohio State University. Division of Geodetic Science. https://kb.osu.edu/handle/1811/105257
Kenyon SC (1998). The development by the National Imagery and Mapping Agency of a global surface gravity anomaly database for the EGM96 geopotential model and future applications. In: Forsberg R, Feissel M, Dietrich R (Eds). Geodesy on the Move. International Association of Geodesy Symposia, Vol 119. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-72245-5_12
Kenyon SC, Pavlis NK (1997). The development of a global gravity anomaly database used in the NIMA/GSFC geopotential model. In: Segawa J, Fujimoto H, Okubo S (Eds). Gravity, Geoid and Marine Geodesy. International Association of Geodesy Symposia, Vol 117. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-03482-8_63
Knudsen P (1987). Estimation and modeling of the local empirical covariance function using gravity and satellite altimeter data. Bulletin Géodésique 61(2):145-160. https://doi.org/10.1007/bf02521264
Knudsen P (2005). Patching local empirical covariance functions – A problem in altimeter data processing. In: Sansò F (Ed). A Window on the Future of Geodesy. International Association of Geodesy Symposia, Vol 128. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-27432-4_82
Krarup T (1969). Contributions to the mathematical foundations of physical geodesy. Geodaetisk institut.
Krarup T (1970). Method of least squares collocation. Studia Geophysica et Geodaetica 14(2):107-109. https://doi.org/10.1007/bf02585604
Kwon JH, Bae T, Choi Y, Lee D, Lee Y (2005). Geodetic datum transformation to the global geocentric datum for seas and islands around Korea. Geosciences Journal 9(4):353-361. https://doi.org/10.1007/bf02910324
Łyszkowicz A (2010). Quasigeoid for the area of Poland computed by least squares collocation. Technical Sciences 13:147-164. https://doi.org/10.2478/v10022-010-0014-7
Maggi A, Migliaccio F, Reguzzoni M, Tselfe N (2007). Combination of ground gravimetry and GOCE data for local geoid determination: a simulation study. The Gravity Field of the Earth, pp. 1-6. Proceedings of the 1st International Symposium of the International Gravity Field Service, General Command of Mapping, Ankara, Turkey.
Marchenko AN, Barthelmes F, Meyer U, Schwintzer P (2002). Efficient regional geoid computations from airborne and surface gravimetry data: A case study. International Association of Geodesy Symposia 223-228. https://doi.org/10.1007/978-3-662-04709-5_37
Marti U (2007). Comparison of high precision geoid models in Switzerland. In: Tregoning P, Rizos C (Eds). Dynamic Planet. International Association of Geodesy Symposia, Vol 130. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-49350-1_55
Meissl P (1971). A study of covariance functions related to the earth's disturbing potential. Ohio State University. Division of Geodetic Science.
Milbert DG (1992). GEOID90: High-resolution geoid height model for the conterminous United States. SEG Technical Program Expanded Abstracts 1992. Society of Exploration Geophysicists, 581-584. https://doi.org/10.1190/1.1822155
Moritz, H. (1978). Least-squares Collocation. Moritz, H. (1978). Least‐squares collocation. Reviews of Geophysics 16(3):421-430. https://doi:10.1029/rg016i003p00421
Odumosu JO, Nnam VC, Nwadialor IJ (2021). An assessment of spatial methods for merging terrestrial with GGM-derived gravity anomaly data. Journal of African Earth Sciences 179:104202. https://doi.org/10.1016/j.jafrearsci.2021.104202
Oladapo MI, Afuda FI (2017). Hydrogeophysical study of parts of Charnockite terrain of Akure southwestern Nigeria. Global Journal of Pure and Applied Sciences 23(1):107-121. https://doi.org/10.4314/gjpas.v23i1.11
Ono MN, Agaje AB, Onwuzuligbo CU (2017). Gravimetric Geoid Determination of Okene Town, Idah Kogi State, Nigeria. Nigerian Journal of Geodesy 1(1):113-136.
Paciorek CJ (2003). Nonstationary covariance functions for Gaussian process regression and spatial modeling. PhD Thesis, Carnegie Mellon University, Pittsburgh, Pennsylvania.
Paciorek CJ, Schervish MJ (2006). Spatial modeling using a new class of nonstationary covariance functions. Environmetrics 17(5):483-506. https://doi.org/10.1002/env.785
Patroba AO (2016). Assessment of EGM2008 using GPS/leveling and free-air gravity anomalies over Nairobi County and its environs. South African Journal of Geomatics 5(1):17-30. http://dx.doi.org/10.4314/sajg.v5i1.2
Peprah MS, Ziggah YY, Yakubu I (2017). Performance evaluation of the Earth Gravitational Model 2008 (EGM2008) A case study. South African Journal of Geomatics 6(1):47-72. http://dx.doi.org/10.4314/sajg.v6i1.4
Ramouz S, Afrasteh Y, Reguzzoni M, Safari A, Saadat A (2019). IRG2018: A regional geoid model for Iran using least squares collocation. Studia Geophysica et Geodaetica 63(2):191-214. https://doi.org/10.1007/s11200-018-0116-4
Rapp RH (1986). Global geopotential solutions. In: Sünkel H (Ed). Mathematical and Numerical Techniques in Physical Geodesy. Lecture Notes in Earth Sciences, Vol 7. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0010136
Reynolds JM (1998). An introduction to applied and environmental geophysics. John Wiley & Sons.
Risser MD, Calder CA (2015). Regression‐based covariance functions for nonstationary spatial modeling. Environmetrics 26(4):284-297. https://doi.org/10.1002/env.2336
Risser MD, Calder CA (2017). Local likelihood estimation for covariance functions with spatially-varying parameters: The convoSPAT Package for R. Journal of Statistical Software 81(14):1-32. https://doi.org/10.18637/jss.v081.i14
Saadon A, El-Ashquer M, Elsaka B, El-Fiky G (2021). Determination of local gravimetric geoid model over Egypt using LSC and FFT estimation techniques based on different satellite- and ground-based datasets. Survey Review 54(384):263-273. https://doi.org/10.1080/00396265.2021.1932148
Sadiq M, Ahmad Z (2009). On the selection of optimal global geopotential models for geoid modeling: A case study in Pakistan. Advances in Space Research 44(5):627-639. https://doi.org/10.1016/j.asr.2009.05.004
Sansò F, Sideris MG (2013). Geoid Determination: Theory and Methods, Springer-Verlag, Berlin Heidelberg, https://doi.org/10.1007/978-3-540-74700-0
Schwarz KP, Lachapelle G (1980). Local characteristics of the gravity anomaly covariance function. Bulletin Géodésique 54(1):21-36. https://doi.org/10.1007/bf02521093
SNEPCO (1995). Final Report of the Gravity Survey of the Gongola Basin, Nigeria.
Tata H (2019). Determination and analysis of geoid models from observed gravity and GPS/Levelling for Akure environs, Ondo State, Nigeria. PhD Dissertation submitted to the School of Postgraduate Studies (Unpublished), Nnamdi Azikiwe University Awka, Anambra State.
Tata H (2024). Insight into the Global Gravity Models for Free-Air Gravity Estimation using Land Gravity Data. Nova Geodesia 4(2):180. https://doi.org/10.55779/ng42180
Tata H, Ono MN (2018). A gravimetric approach for the determination of orthometric heights in Akure environs, Ondo State, Nigeria. Journal of Environment and Earth Sciences 8(8):2224-3216.
Tata H, Ono MN, Idowu TO (2019). Development of a computational tool for the determination of the local geoid using gravimetric and GPS/Leveling approaches. Nigerian Journal of Geodesy 3(1).
Telford WM, Geldart LP, Sheriff RE (1990). Applied Geophysics. Cambridge University Press.
Timilsina S, Willberg M, Pail R (2021). Regional geoid for Nepal using least-squares collocation. Terrestrial, Atmospheric and Oceanic Sciences 32:847-856. https://doi.org/10.3319/tao.2021.08.23.02
Torge W (2001). Geodesy. Walter de Gruyter.
Tscherning C, Rapp RH (1974). Closed covariance expressions for gravity anomalies, geoid undulations, and deflections of the vertical are implied by the anomaly variance models. Ohio State University. Division of Geodetic Science. https://kb.osu.edu/handle/1811/104988
Tscherning CC (1994). Geoid determination by least-squares collocation using GRAVSOFT, Lectures Notes for the International School for the Determination and Use of the Geoid, DIIAR - Politecnico di Milano, Milano.
Tscherning CC (2001). Computation of spherical harmonic coefficients and their error estimates using least-squares collocation. Journal of Geodesy 75(1):12-18. https://doi.org/10.1007/s001900000150
Tscherning CC (2013). Geoid determination by 3D least-squares collocation. In: Sansò F, Sideris M (Eds). Geoid Determination. Lecture Notes in Earth System Sciences, Vol 110. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74700-0_7
Tscherning CC, Forsberg R (1992). Harmonic continuation and gridding effects on geoid height prediction. Bulletin Géodésique 66:41-53. https://doi.org/10.1007/BF00806809
Tscherning CC, Rubek F, Forsberg R (1998). Combining airborne and ground gravity using collocation. In: Forsberg R, Feissel M, Dietrich R (Eds). Geodesy on the Move. International Association of Geodesy Symposia, Vol 119. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-72245-5_3
Tukka AA, Dodo JD, Ariyo TO (2016). Comparative analysis of positional results of post processed GPS survey data using Three Trimble Software Packages. Journal of Macrotrends in Applied Science (JMAS) 4(1):1-12.
You R, Hwang H (2006). Coordinate transformation between two geodetic datums of Taiwan by least-squares collocation. Journal of Surveying Engineering 132(2):64-70. https://doi.org/10.1061/(ASCE)0733-9453(2006)132:2(64)
Zhang K, Featherstone W (2004). Investigation of the roughness of the Australian gravity field using statistical, graphical, fractal, and Fourier power spectrum techniques. Survey Review 37(293):520-530. https://doi.org/10.1179/sre.2004.37.293.520

Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Apolllos A. TUKKA, Timothy O. IDOWU, Herbert TATA

This work is licensed under a Creative Commons Attribution 4.0 International License.
Distribution - Permissions - Copyright
Papers published in Nova Geodesia are Open-Access, distributed under the terms and conditions of the Creative Commons Attribution License.
© Articles by the authors; licensee SMTCT, Cluj-Napoca, Romania. The journal allows the author(s) to hold the copyright/to retain publishing rights without restriction.
License:
Open Access Journal - the journal offers free, immediate, and unrestricted access to peer-reviewed research and scholarly work, due to SMTCT support to increase the visibility, accessibility and reputation of the researchers, regardless of geography and their budgets. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles, or use them for any other lawful purpose, without asking prior permission from the publisher or the author.