Forest sampling techniques in different types of vegetation applying plot sampling, non-plot sampling, and remote sensing
DOI:
https://doi.org/10.55779/ng43202Keywords:
biomass, carbon, innovation, forest inventories, sampling methodsAbstract
Forest inventories are undergoing rapid changes due to an increasingly complex set of economic, environmental, and social policy objectives. Therefore, the objective is to identify, analyse, and discuss the main forest inventory methods at global, regional, and local levels, with an analytical perspective on the goals they seek to achieve in various forest ecosystems. For this review, information from 79 relevant studies related to the objectives and methods used in sampling forest resources in tropical, boreal, temperate, and arid ecosystems was considered. According to the analysed studies, forest inventories in different ecosystems face challenges and apply varied methods to assess forests. In the tropics, the focus is on monitoring biomass and carbon, but they show limitations in data quality and quantity limitations. To improve accuracy, robust sampling methods are suggested. In boreal ecosystems, LiDAR and data-driven models offer detailed biomass estimates. In temperate forests, diversified sampling techniques are employed to balance accuracy and efficiency. In arid ecosystems, non-plot methods are useful for mapping density and diversity of the forests. To board the specific challenges of each region, innovative approaches are needed. Inventories have been influenced by changes in environmental policies and technology; therefore, the need to estimate key forest variables and monitor their dynamics requires robust and technologically advanced sampling methods.
Metrics
References
Adnan S, Maltamo M, Coomes DA, García-Abril A, Malhi Y, Manzanera JA, Butt N, Morecroft M, Valbuena R (2019). A simple approach to forest structure classification using airborne laser scanning that can be adopted across bioregions. Forest Ecology and Management 433:111-121. https://doi.org/https://doi.org/10.1016/j.foreco.2018.10.057
Aguirre Calderón OA, Jiménez Pérez J, Treviño Garza EJ, Meraz Alemán B (1997). Evaluación de diversos tamaños de sitio de muestreo en inventarios forestales [Assessment of Various Plot Sizes in Forest Inventories]. Madera y Bosques 3(1):71-79. https://doi.org/10.21829/myb.1997.311380
Aguirre OA, Jiménez Pérez J, Meraz B (1995). Optimizing inventories for forest management: A study case in Durango, México. Forest Systems 4(1):107-118. https://doi.org/https://doi.org/10.5424/540
Alekseev A, Tomppo E, McRoberts RE, von Gadow K (2019). A constructive review of the State Forest Inventory in the Russian Federation. Forest Ecosystems 6(1):9. https://doi.org/10.1186/s40663-019-0165-3
Appiah M (2013). Tree population inventory, diversity and degradation analysis of a tropical dry deciduous forest in Afram Plains, Ghana. Forest Ecology and Management 295:145-154. https://doi.org/https://doi.org/10.1016/j.foreco.2013.01.023
Arias-Medellín LA, Flores-Palacios A, Martínez-Garza C (2014). Cacti community structure in a tropical Mexican dry forest under chronic disturbance. Botanical Sciences 92(3):405-415. https://doi.org/https://doi.org/10.17129/botsci.92
Badouard V, Schmitt S, Salzet G, Gaquiere T, Rojat M, Bedeau C, Brunaux O, Derroire G (2024). LoggingLab: An R package to simulate reduced-impact selective logging in tropical forests using forest inventory data. Ecological Modelling 487:110539. https://doi.org/10.1016/j.ecolmodel.2023.110539
Basiri R, Moradi M, Kiani B, Maasumi Babaarabi M (2018). Evaluation of distance methods for estimating population density in Populus euphratica Olivier natural stands (case study: Maroon riparian forests, Iran). Journal of Forest Science 64(5):230-244. http://dx.doi.org/10.17221/146/2017-JFS
Beyene SM, Hussin YA, Kloosterman HE, Ismail MH (2020). Forest Inventory and Aboveground Biomass Estimation with Terrestrial LiDAR in the Tropical Forest of Malaysia. Canadian Journal of Remote Sensing 46(2):130-145. https://doi.org/10.1080/07038992.2020.1759036
Bouvier M, Durrieu S, Fournier RA, Renaud J-P (2015). Generalizing predictive models of forest inventory attributes using an area-based approach with airborne LiDAR data. Remote Sensing of Environment 156:322-334. https://doi.org/https://doi.org/10.1016/j.rse.2014.10.004
Briones O, Búrquez A, Martínez-Yrízar A, Pavón N, Perroni Y (2018). Biomasa y productividad en las zonas áridas mexicanas. Madera y Bosques 24: e2401898. https://doi.org/10.21829/myb.2018.2401898
Brosofske KD, Froese RE, Falkowski MJ, Banskota A (2013). A Review of methods for mapping and prediction of inventory attributes for operational forest management. Forest Science 60(4):733-756. https://doi.org/10.5849/forsci.12-134
Brown S, Gaston G (1995). Use of forest inventories and geographic information systems to estimate biomass density of tropical forests: Application to tropical Africa. Environmental Monitoring and Assessment 38(2):157-168. https://doi.org/10.1007/BF00546760
Brown S, Gillespie AJ, Lugo AE (1989). Biomass estimation methods for tropical forests with applications to forest inventory data. Forest Science 35(4):881-902. https://doi.org/10.1093/forestscience/35.4.881
Castillo Elías B, Gervacio Jiménez H, Bedolla Solano R (2018). Estructura forestal de una zona de manglar en la laguna de Coyuca de Benítez, Guerrero [The Forest Structure of a Mangrove Area in the Coyuca de Benítez Lagoon, Guerrero]. Revista Mexicana de Ciencias Forestales 9(45). https://doi.org/10.29298/rmcf.v9i45.140
Corona P, Marchetti M (2007). Outlining multi-purpose forest inventories to assess the ecosystem approach in forestry. Plant Biosystems - An International Journal Dealing with all Aspects of Plant Biology 141(2):243-251. https://doi.org/10.1080/11263500701401836
Dai W, Guan Q, Cai S, Liu R, Chen R, Liu Q, Chen C, Dong Z (2022). A comparison of the performances of Unmanned-Aerial-Vehicle (UAV) and terrestrial laser scanning for forest plot canopy cover estimation in Pinus massoniana forests. Remote Sensing 14(5):1188. https://www.mdpi.com/2072-4292/14/5/1188
Dupuy JM, Hernández-Stefanoni JL, Hernández-Juárez RA, Tetetla-Rangel E, López-Martínez JO, Leyequién-Abarca E, Tun-Dzul FJ, May-Pat F (2012). Patterns and correlates of tropical dry forest structure and composition in a highly replicated chronosequence in Yucatan, Mexico. Biotropica 44(2):151-162. https://doi.org/10.1111/j.1744-7429.2011.00783.x
Eyvindson KJ, Petty AD, Kangas AS (2017). Determining the appropriate timing of the next forest inventory: incorporating forest owner risk preferences and the uncertainty of forest data quality. Annals of Forest Science 74(1):2. https://doi.org/10.1007/s13595-016-0607-9
Frelich LE (2020). Boreal and Taiga Biome. In: Goldstein MI, DellaSala DA (Eds). Encyclopedia of the World’s Biomes. Elsevier pp 103-115. https://doi.org/10.1016/B978-0-12-409548-9.11926-8
Fridman J, Holm S, Nilsson M, Nilsson P, Ringvall AH, Ståhl G (2014). Adapting National Forest Inventories to changing requirements – the case of the Swedish National Forest Inventory at the turn of the 20th century, Vol 48. https://doi.org/doi:10.14214/sf.1095
Gaem PH, Andrade A, Mazine FF, Vicentini A (2022). Tree species delimitation in tropical forest inventories: Perspectives from a taxonomically challenging case study. Forest Ecology and Management 505:119900. https://doi.org/10.1016/j.foreco.2021.119900
Galeote-Leyva B, Valdez-Lazalde JR, Ángeles-Pérez G, De los Santos-Posadas HM, Romero Padilla JM (2022). Inventario forestal asistido por LIDAR: efecto de la densidad de retornos y el diseño de muestreo sobre la precision [LIDAR-Assisted forest inventory: Effect of return density and sampling design on accuracy]. Madera y Bosques 28(2):e2822330. https://doi.org/10.21829/myb.2022.2822330
Galván-Moreno VS, Olivas-García JM, Rascón-Solano J, Hernández-Salas J (2023). Evaluation of two sampling methods for even-age Pinus forest in northern Mexico. Notulae Scientia Biologicae 15(2):11564. https://doi.org/10.55779/nsb15211564
Gerhold P, Price JN, Püssa K, Kalamees R, Aher K, Kaasik A, Pärtel M (2013). Functional and phylogenetic community assembly linked to changes in species diversity in a long-term resource manipulation experiment. Journal of Vegetation Science 24(5):843-852. https://doi.org/10.1111/jvs.12052
Giri C (2016). Observation and monitoring of mangrove forests using remote sensing: Opportunities and challenges. Remote Sensing 8(9):783. https://doi.org/10.3390/rs8090783
Goodbody TRH, Coops NC, Marshall PL, Tompalski P, Crawford P (2017). Unmanned aerial systems for precision forest inventory purposes: A review and case study. The Forestry Chronicle 93(01):71-81. https://doi.org/10.5558/tfc2017-012
Gregoire TG, Ståhl G, Næsset E, Gobakken T, Nelson R, Holm S (2011). Model-assisted estimation of biomass in a LiDAR sample survey in Hedmark County, Norway. Canadian Journal of Forest Research 41(1):83-95. https://doi.org/10.1139/x10-195
Hannah L, David L, Charles H, Carr JL, Ali L (1994). A preliminary inventory of human disturbance of world ecosystems. Ambio 23(4/5):246-250. http://www.jstor.org/stable/4314213
Haywood A, Mellor A, Stone C (2016). A strategic forest inventory for public land in Victoria, Australia. Forest Ecology and Management 367:86-96. https://doi.org/10.1016/j.foreco.2016.02.026
Hernandez-Alvarez E, Pelz DR, Carlos R-F (2006). Inventorying and monitoring of tropical dry forests tree diversity in Jalisco, Mexico using a Geographical Information System. Research and Development pp 638-648. https://www.fs.usda.gov/research/treesearch/26551
Hilmers T, Biber P, Knoke T, Pretzsch H (2020). Assessing transformation scenarios from pure Norway spruce to mixed uneven-aged forests in mountain areas. European Journal of Forest Research 139(4):567-584. https://doi.org/10.1007/s10342-020-01270-y
Hitimana J, Ole Kiyiapi JL, Bekuta BK (2019). Efficient protocol of complete inventory for tree regeneration and recruitment studies over one hectare in selected tropical natural forests, Kenya. Repositorio Dspace 6(3):376-392. https://doi.org/10.22271/tpr.2019.v6.i3.047
Iles K (2003). A sampler of inventory topics. Kim Iles and Associates, Nanaimo, BC.
Jones AR, Raja Segaran R, Clarke KD, Waycott M, Goh WSH, Gillanders BM (2020). Estimating mangrove tree biomass and carbon content: A comparison of forest inventory techniques and drone imagery [Original Research]. Frontiers in Marine Science 6. https://doi.org/10.3389/fmars.2019.00784
Kauffman JB, Donato DC, Adame MF (2013). Protocolo para la medición, monitoreo y reporte de la estructura, biomasa y reservas de carbono de los manglares [Protocol for the Measurement, Monitoring, and Reporting of Mangrove Structure, Biomass, and Carbon Reserves] Vol 117, Cifor.
Kenning RS, Ducey MJ, Brissette JC, Gove JH (2005). Field efficiency and bias of snag inventory methods. Canadian Journal of Forest Research 35(12):2900-2910. https://doi.org/10.1139/x05-207
Kiani B, Fallah A, Tabari M, Hosseini SM, Parizi M (2013). A comparison of distance sampling methods in Saxaul (Halloxylon ammodendron CA Mey Bunge) Shrub-Lands. Polish Journal of Ecology 61(2):207-219.
Kleinn C, Bhandari N, Fehrmann L (2015). Observations and measurements. In: Knowledge reference for national forest assessments. Food and Agriculture Organization of the United Nations, Rome pp 41-52. https://www.fao.org/3/i4822e/i4822e.pdf
Knapp N, Huth A, Kugler F, Papathanassiou K, Condit R, Hubbell SP, Fischer R (2018). Model-Assisted Estimation of Tropical Forest Biomass Change: A Comparison of Approaches. Remote Sensing 10(5):731. https://www.mdpi.com/2072-4292/10/5/731
Kristensen T, Næsset E, Ohlson M, Bolstad PV, Kolka R (2015). Mapping above-and below-ground carbon pools in boreal forests: The case for airborne lidar. PLoS ONE 10(10):e0138450. https://doi.org/10.1371/journal.pone.0138450
Kuliešis A, Tomter SM, Vidal C, Lanz A (2016). Estimates of stem wood increments in forest resources: comparison of different approaches in forest inventory: consequences for international reporting: case study of European forests. Annals of Forest Science 73(4):857-869. https://doi.org/10.1007/s13595-016-0559-0
Leak WB, Yamasaki M, Holleran R (2014). Silvicultural guide for northern hardwoods in the northeast. General Technical Report. Northern Research Station NRS-132. Newtown Square, PA: US Department of Agriculture, Forest Service. https://doi.org/10.2737/NRS-GTR-132
Leiter M, Hasenauer H (2023). Continuous cover forestry: Which sampling method should be used to ensure sustainable management? Trees, Forests and People 13:100419. https://doi.org/10.1016/j.tfp.2023.100419
Liang X, Kankare V, Hyyppä J, Wang Y, Kukko A, Haggrén H, Yu X, Kaartinen H, Jaakkola A, Guan F, Holopainen M, Vastaranta M (2016). Terrestrial laser scanning in forest inventories. ISPRS Journal of Photogrammetry and Remote Sensing 115:63-77. https://doi.org/10.1016/j.isprsjprs.2016.01.006
Lopez‐Gonzalez G, Lewis SL, Burkitt M, Phillips OL (2011). ForestPlots.net: a web application and research tool to manage and analyse tropical forest plot data. Journal of Vegetation Science 22(4):610-613. https://doi.org/10.1111/j.1654-1103.2011.01312.x
Lupi C, Larocque GR, DesRochers A, Labrecque M, Mosseler A, Major J, Beaulieu J, Tremblay F, Gordon AM, Thomas BR, Vézina A, Bouafif H, Cormier D, Sidders D, Krygier R (2017). Biomass from young hardwood stands on marginal lands: Allometric equations and sampling methods. Biomass and Bioenergy 98:172-181. https://doi.org/10.1016/j.biombioe.2017.01.023
Malhi Y, Girardin C, Metcalfe DB, Doughty CE, Aragão LEOC, Rifai SW, Oliveras I, Shenkin A, Aguirre-Gutiérrez J, Dahlsjö CAL, Riutta T, Berenguer E, Moore S, Huasco WH, Salinas N, da Costa ACL, Bentley LP, Adu-Bredu S, Marthews TR, Meir P, Phillips OL (2021). The Global Ecosystems Monitoring network: Monitoring ecosystem productivity and carbon cycling across the tropics. Biological Conservation 253:108889. https://doi.org/10.1016/j.biocon.2020.108889
Maltamo M, Packalen P (2014). Species-specific management inventory in Finland. In: Maltamo M, Næsset E, Vauhkonen J (Eds). Forestry Applications of Airborne Laser Scanning. Managing Forest Ecosystems, Vol 27. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-8663-8_12
Margolis HA, Nelson RF, Montesano PM, Beaudoin A, Sun G, Andersen H-E, Wulder MA (2015). Combining satellite lidar, airborne lidar, and ground plots to estimate the amount and distribution of aboveground biomass in the boreal forest of North America. Canadian Journal of Forest Research 45(7):838-855. https://doi.org/10.1139/cjfr-2015-0006
McRoberts RE (2010). The effects of rectification and Global Positioning System errors on satellite image-based estimates of forest area. Remote Sensing of Environment 114(8):1710-1717. https://doi.org/10.1016/j.rse.2010.03.001
McRoberts RE (2012). Estimating forest attribute parameters for small areas using nearest neighbors techniques. Forest Ecology and Management 272:3-12. https://doi.org/10.1016/j.foreco.2011.06.039
McRoberts RE, Bechtold WA, Patterson PL, Scott CT, Reams GA (2005). The enhanced forest inventory and analysis program of the USDA forest service: Historical perspective and announcement of statistical documentation. Journal of Forestry 103(6):304-308. https://doi.org/10.1093/jof/103.6.304
McRoberts RE, Tompo EO, Vibrans AC, de Freitas JV (2013). Design considerations for tropical forest inventories. Pesquisa Florestal Brasileira 33(74):189-202. https://doi.org/10.4336/2013.pfb.33.74.430
McRoberts RE, Tomppo EO, Næsset E (2010). Advances and emerging issues in national forest inventories. Scandinavian Journal of Forest Research 25(4):368-381. https://doi.org/10.1080/02827581.2010.496739
Mirzaei M, Bonyad AE (2016). Comparison of fixed area and distance sampling methods in open forests: case study of Zagros Forest, Iran. Journal of Forestry Research 27(5):1121-1126. https://doi.org/10.1007/s11676-016-0239-9
Mohren GMJ, Hasenauer H, Köhl M, Nabuurs GJ (2012). Forest inventories for carbon change assessments. Current Opinion in Environmental Sustainability 4(6):686-695. https://doi.org/10.1016/j.cosust.2012.10.002
Mora-Espinoza JA, Peñalver-Romeo A, Aguilar-Torres FJ, Rivas-Barzola JR, Triana-Tomalá Á (2020). Método de muestreo angular para el inventario de plantaciones forestales de teca (Tectona grandis L. f.) [Angular Sampling Method for Inventory of Teak (Tectona grandis L. f.) Plantations]. Revista Chapingo Serie Ciencias Forestales y del Ambiente 26(3):419-432. https://doi.org/10.5154/r.rchscfa.2019.11.081
Muhsoni FF, Sambah AB, Mahmudi M, Wiadnya DGR (2018). Comparison of different vegetation indices for assessing mangrove density using sentinel-2 imagery. GEOMATE Journal 14(45):42-51. https://geomatejournal.com/geomate/article/view/2037
Næsset E, Bollandsås OM, Gobakken T, Gregoire TG, Ståhl G (2013). Model-assisted estimation of change in forest biomass over an 11 year period in a sample survey supported by airborne LiDAR: A case study with post-stratification to provide “activity data”. Remote Sensing of Environment 128:299-314. https://doi.org/10.1016/j.rse.2012.10.008
Nelson R, Gobakken T, Næsset E, Gregoire TG, Ståhl G, Holm S, Flewelling J (2012). Lidar sampling – Using an airborne profiler to estimate forest biomass in Hedmark County, Norway. Remote Sensing of Environment 123:563-578. https://doi.org/10.1016/j.rse.2011.10.036
Nunes A, Tapia S, Pinho P, Correia O, Branquinho C (2015). Advantages of the point-intercept method for assessing functional diversity in semi-arid areas [Advantages of the point-intercept method for assessing functional diversity in semi-arid areas] [Research Articles]. iForest - Biogeosciences and Forestry 8(4):471-479. https://doi.org/10.3832/ifor1261-007
Parrotta JA (1992). The role of plantation forests in rehabilitating degraded tropical ecosystems. Agriculture, Ecosystems and Environment 41(2):115-133. https://doi.org/10.1016/0167-8809(92)90105-K
Pece M, Ríos N, Gaillard de Benítez C, Acosta V (2000). Comparación entre métodos de muestreo [Comparison Between Sampling Methods]. Investigación Agraria. Sistemas y Recursos Forestales 9(1):45-58.
Picard N, Gamarra JGP, Birigazzi L, Branthomme A (2018). Plot-level variability in biomass for tropical forest inventory designs. Forest Ecology and Management 430:10-20. https://doi.org/10.1016/j.foreco.2018.07.052
Ploton P, Mortier F, Barbier N, Cornu G, Réjou-Méchain M, Rossi V, Alonso A, Bastin J-F, Bayol N, Bénédet F, Bissiengou P, Chuyong G, Demarquez B, Doucet J-L, Droissart V, Kamdem NG, Kenfack D, Memiaghe H, Moses L, Sonké B, Texier N, Thomas D, Zebaze D, Pélissier R, Gourlet-Fleury S (2020). A map of African humid tropical forest aboveground biomass derived from management inventories. Scientific Data 7(1):221. https://doi.org/10.1038/s41597-020-0561-0
Pucher C, Neumann M, Hasenauer H. An improved forest structure data set for Europe. Remote Sensing 14(2):395. https://doi.org/10.3390/rs14020395
Romijn E, Lantican CB, Herold M, Lindquist E, Ochieng R, Wijaya A, Murdiyarso D, Verchot L (2015). Assessing change in national forest monitoring capacities of 99 tropical countries. Forest Ecology and Management 352:109-123. https://doi.org/10.1016/j.foreco.2015.06.003
Silva LB, Alves M, Elias RB, Silva L (2017). Comparison of tree sampling methods in Pittosporum undulatum invaded woodlands. International Journal of Forestry Research 2818132. https://doi.org/10.1155/2017/2818132
Strunk J, Temesgen H, Andersen H-E, Flewelling JP, Madsen L (2012). Effects of lidar pulse density and sample size on a model-assisted approach to estimate forest inventory variables. Canadian Journal of Remote Sensing 38(5):644-654. https://doi.org/10.5589/m12-052
Suganuma H, Abe Y, Taniguchi M, Tanouchi H, Utsugi H, Kojima T, Yamada K (2006). Stand biomass estimation method by canopy coverage for application to remote sensing in an arid area of Western Australia. Forest Ecology and Management 222(1):75-87. https://doi.org/10.1016/j.foreco.2005.10.014
Tinkham WT, Mahoney PR, Hudak AT, Domke GM, Falkowski MJ, Woodall CW, Smith AMS (2018). Applications of the United States Forest Inventory and analysis dataset: a review and future directions. Canadian Journal of Forest Research 48(11):1251-1268. https://doi.org/10.1139/cjfr-2018-0196
Tompalski P, Coops NC, White, JC, Wulder MA (2016). Enhancing forest growth and yield predictions with airborne laser scanning data: Increasing spatial detail and optimizing yield curve selection through template matching. Forests 7(11):255. https://doi.org/10.3390/f7110255
Tompo E, Heikkinen J, Henttonen HM, Ihalainen A, Katila M, Mäkelä H, Tuomainen T, Vainikainen N (2011). Designing and conducting a forest inventory - case: 9th National Forest Inventory of Finland (Vol XII). https://doi.org/10.1007/978-94-007-1652-0
Tomppo E, Gschwantner T, Lawrence M, McRoberts RE, Gabler K, Schadauer K, Vidal C, Lanz A, Ståhl G, Cienciala E (2010). National forest inventories. Pathways for Common Reporting. European Science Foundation 1:541-553.
Tomppo E, Olsson H, Ståhl G, Nilsson M, Hagner O, Katila M (2008). Combining national forest inventory field plots and remote sensing data for forest databases. Remote Sensing of Environment 112(5):1982-1999. https://doi.org/https://doi.org/10.1016/j.rse.2007.03.032
Treitz P, Lim K, Woods M, Pitt D, Nesbitt D, Etheridge D (2012). LiDAR Sampling density for forest resource inventories in Ontario, Canada. Remote Sensing 4(4):830-848. https://doi.org/10.3390/rs4040830
Vandendaele B, Fournier RA, Vepakomma U, Pelletier G, Lejeune P, Martin-Ducup O (2021). Estimation of northern hardwood forest inventory attributes using UAV Laser Scanning (ULS): Transferability of laser scanning methods and comparison of automated approaches at the tree- and stand-level. Remote Sensing 13(14):2796. https://www.mdpi.com/2072-4292/13/14/2796
Vidal C, Alberdi IA, Hernández-Mateo L, Redmond JJ (2016). National Forest Inventories (Vol XXXII). Springer Cham. https://doi.org/https://doi.org/10.1007/978-3-319-44015-6
Wang Y, Pyörälä J, Liang X, Lehtomäki M, Kukko A, Yu X, Kaartinen H, Hyyppä J (2019). In situ biomass estimation at tree and plot levels: What did data record and what did algorithms derive from terrestrial and aerial point clouds in boreal forest. Remote Sensing of Environment 232:111309. https://doi.org/https://doi.org/10.1016/j.rse.2019.111309
White JC, Coops NC, Wulder MA, Vastaranta M, Hilker T, Tompalski P (2016). Remote sensing technologies for enhancing forest inventories: A review. Canadian Journal of Remote Sensing 42(5):619-641. https://doi.org/10.1080/07038992.2016.1207484
Wittke S, Yu X, Karjalainen M, Hyyppä J, Puttonen E (2019). Comparison of two-dimensional multitemporal Sentinel-2 data with three-dimensional remote sensing data sources for forest inventory parameter estimation over a boreal forest. International Journal of Applied Earth Observation and Geoinformation 76:167-178. https://doi.org/https://doi.org/10.1016/j.jag.2018.11.009
Woods M, Pitt D, Penner M, Lim K, Nesbitt D, Etheridge D, Treitz P (2011). Operational implementation of a LiDAR inventory in Boreal Ontario. The Forestry Chronicle 87(4):512-528. https://doi.org/10.5558/tfc2011-050
Zhu X, Zhang J (2009). Quartered neighbor method: A new distance method for density estimation. Frontiers of Biology in China 4(4):574-578. https://doi.org/10.1007/s11515-009-0039-0
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Viridiana Sugey GALVÁN-MORENO, Oscar Alberto AGUIRRE-CALDERÓN, Eduardo ALANÍS-RODRÍGUEZ, Javier JIMÉNEZ-PÉREZ, Luis Gerardo CUÉLLAR-RODRÍGUEZ, Gerónimo QUIÑONEZ-BARRAZA, Joel RASCÓN-SOLANO
This work is licensed under a Creative Commons Attribution 4.0 International License.
Distribution - Permissions - Copyright
Papers published in Nova Geodesia are Open-Access, distributed under the terms and conditions of the Creative Commons Attribution License.
© Articles by the authors; licensee SMTCT, Cluj-Napoca, Romania. The journal allows the author(s) to hold the copyright/to retain publishing rights without restriction.
License:
Open Access Journal - the journal offers free, immediate, and unrestricted access to peer-reviewed research and scholarly work, due to SMTCT support to increase the visibility, accessibility and reputation of the researchers, regardless of geography and their budgets. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles, or use them for any other lawful purpose, without asking prior permission from the publisher or the author.