Forest sampling techniques in different types of vegetation applying plot sampling, non-plot sampling, and remote sensing

Authors

  • Viridiana Sugey GALVÁN-MORENO Autonomous University of Nuevo León, Faculty of Forestry Sciences, Doctoral Program in Sciences with Orientation in Natural Resources Management, National Highway Km 145, ZIP 67700, Linares, Nuevo León (MX)
  • Oscar Alberto AGUIRRE-CALDERÓN Autonomous University of Nuevo León, Faculty of Forestry Sciences, National Highway Km 145, ZIP 67700, Linares, Nuevo León (MX) https://orcid.org/0000-0001-5668-8869
  • Eduardo ALANÍS-RODRÍGUEZ Autonomous University of Nuevo León, Faculty of Forestry Sciences, National Highway Km 145, ZIP 67700, Linares, Nuevo León (MX) https://orcid.org/0000-0001-6294-4275
  • Javier JIMÉNEZ-PÉREZ Autonomous University of Nuevo León, Faculty of Forestry Sciences, National Highway Km 145, ZIP 67700, Linares, Nuevo León (MX) https://orcid.org/0000-0003-4246-7613
  • Luis Gerardo CUÉLLAR-RODRÍGUEZ Autonomous University of Nuevo León, Faculty of Forestry Sciences, National Highway Km 145, ZIP 67700, Linares, Nuevo León (MX) https://orcid.org/0000-0003-4969-611X
  • Gerónimo QUIÑONEZ-BARRAZA National Institute of Agricultural and Livestock Forestry Research, Guadiana Valley Experimental Field (INIFAP-CEVAG), Km 4.5 Durango-Mezquital Highway, 34170, Durango, Durango (MX) https://orcid.org/0000-0002-5966-3664
  • Joel RASCÓN-SOLANO Autonomous University of Chihuahua, Faculty of Agricultural and Forestry Sciences, 2.5 km on Delicias-Rosales Road 33000, Delicias, Chihuahua (MX) https://orcid.org/0000-0002-2541-4176

DOI:

https://doi.org/10.55779/ng43202

Keywords:

biomass, carbon, innovation, forest inventories, sampling methods

Abstract

Forest inventories are undergoing rapid changes due to an increasingly complex set of economic, environmental, and social policy objectives. Therefore, the objective is to identify, analyse, and discuss the main forest inventory methods at global, regional, and local levels, with an analytical perspective on the goals they seek to achieve in various forest ecosystems. For this review, information from 79 relevant studies related to the objectives and methods used in sampling forest resources in tropical, boreal, temperate, and arid ecosystems was considered. According to the analysed studies, forest inventories in different ecosystems face challenges and apply varied methods to assess forests. In the tropics, the focus is on monitoring biomass and carbon, but they show limitations in data quality and quantity limitations. To improve accuracy, robust sampling methods are suggested. In boreal ecosystems, LiDAR and data-driven models offer detailed biomass estimates. In temperate forests, diversified sampling techniques are employed to balance accuracy and efficiency. In arid ecosystems, non-plot methods are useful for mapping density and diversity of the forests. To board the specific challenges of each region, innovative approaches are needed. Inventories have been influenced by changes in environmental policies and technology; therefore, the need to estimate key forest variables and monitor their dynamics requires robust and technologically advanced sampling methods.

Metrics

Metrics Loading ...

References

Adnan S, Maltamo M, Coomes DA, García-Abril A, Malhi Y, Manzanera JA, Butt N, Morecroft M, Valbuena R (2019). A simple approach to forest structure classification using airborne laser scanning that can be adopted across bioregions. Forest Ecology and Management 433:111-121. https://doi.org/https://doi.org/10.1016/j.foreco.2018.10.057

Aguirre Calderón OA, Jiménez Pérez J, Treviño Garza EJ, Meraz Alemán B (1997). Evaluación de diversos tamaños de sitio de muestreo en inventarios forestales [Assessment of Various Plot Sizes in Forest Inventories]. Madera y Bosques 3(1):71-79. https://doi.org/10.21829/myb.1997.311380

Aguirre OA, Jiménez Pérez J, Meraz B (1995). Optimizing inventories for forest management: A study case in Durango, México. Forest Systems 4(1):107-118. https://doi.org/https://doi.org/10.5424/540

Alekseev A, Tomppo E, McRoberts RE, von Gadow K (2019). A constructive review of the State Forest Inventory in the Russian Federation. Forest Ecosystems 6(1):9. https://doi.org/10.1186/s40663-019-0165-3

Appiah M (2013). Tree population inventory, diversity and degradation analysis of a tropical dry deciduous forest in Afram Plains, Ghana. Forest Ecology and Management 295:145-154. https://doi.org/https://doi.org/10.1016/j.foreco.2013.01.023

Arias-Medellín LA, Flores-Palacios A, Martínez-Garza C (2014). Cacti community structure in a tropical Mexican dry forest under chronic disturbance. Botanical Sciences 92(3):405-415. https://doi.org/https://doi.org/10.17129/botsci.92

Badouard V, Schmitt S, Salzet G, Gaquiere T, Rojat M, Bedeau C, Brunaux O, Derroire G (2024). LoggingLab: An R package to simulate reduced-impact selective logging in tropical forests using forest inventory data. Ecological Modelling 487:110539. https://doi.org/10.1016/j.ecolmodel.2023.110539

Basiri R, Moradi M, Kiani B, Maasumi Babaarabi M (2018). Evaluation of distance methods for estimating population density in Populus euphratica Olivier natural stands (case study: Maroon riparian forests, Iran). Journal of Forest Science 64(5):230-244. http://dx.doi.org/10.17221/146/2017-JFS

Beyene SM, Hussin YA, Kloosterman HE, Ismail MH (2020). Forest Inventory and Aboveground Biomass Estimation with Terrestrial LiDAR in the Tropical Forest of Malaysia. Canadian Journal of Remote Sensing 46(2):130-145. https://doi.org/10.1080/07038992.2020.1759036

Bouvier M, Durrieu S, Fournier RA, Renaud J-P (2015). Generalizing predictive models of forest inventory attributes using an area-based approach with airborne LiDAR data. Remote Sensing of Environment 156:322-334. https://doi.org/https://doi.org/10.1016/j.rse.2014.10.004

Briones O, Búrquez A, Martínez-Yrízar A, Pavón N, Perroni Y (2018). Biomasa y productividad en las zonas áridas mexicanas. Madera y Bosques 24: e2401898. https://doi.org/10.21829/myb.2018.2401898

Brosofske KD, Froese RE, Falkowski MJ, Banskota A (2013). A Review of methods for mapping and prediction of inventory attributes for operational forest management. Forest Science 60(4):733-756. https://doi.org/10.5849/forsci.12-134

Brown S, Gaston G (1995). Use of forest inventories and geographic information systems to estimate biomass density of tropical forests: Application to tropical Africa. Environmental Monitoring and Assessment 38(2):157-168. https://doi.org/10.1007/BF00546760

Brown S, Gillespie AJ, Lugo AE (1989). Biomass estimation methods for tropical forests with applications to forest inventory data. Forest Science 35(4):881-902. https://doi.org/10.1093/forestscience/35.4.881

Castillo Elías B, Gervacio Jiménez H, Bedolla Solano R (2018). Estructura forestal de una zona de manglar en la laguna de Coyuca de Benítez, Guerrero [The Forest Structure of a Mangrove Area in the Coyuca de Benítez Lagoon, Guerrero]. Revista Mexicana de Ciencias Forestales 9(45). https://doi.org/10.29298/rmcf.v9i45.140

Corona P, Marchetti M (2007). Outlining multi-purpose forest inventories to assess the ecosystem approach in forestry. Plant Biosystems - An International Journal Dealing with all Aspects of Plant Biology 141(2):243-251. https://doi.org/10.1080/11263500701401836

Dai W, Guan Q, Cai S, Liu R, Chen R, Liu Q, Chen C, Dong Z (2022). A comparison of the performances of Unmanned-Aerial-Vehicle (UAV) and terrestrial laser scanning for forest plot canopy cover estimation in Pinus massoniana forests. Remote Sensing 14(5):1188. https://www.mdpi.com/2072-4292/14/5/1188

Dupuy JM, Hernández-Stefanoni JL, Hernández-Juárez RA, Tetetla-Rangel E, López-Martínez JO, Leyequién-Abarca E, Tun-Dzul FJ, May-Pat F (2012). Patterns and correlates of tropical dry forest structure and composition in a highly replicated chronosequence in Yucatan, Mexico. Biotropica 44(2):151-162. https://doi.org/10.1111/j.1744-7429.2011.00783.x

Eyvindson KJ, Petty AD, Kangas AS (2017). Determining the appropriate timing of the next forest inventory: incorporating forest owner risk preferences and the uncertainty of forest data quality. Annals of Forest Science 74(1):2. https://doi.org/10.1007/s13595-016-0607-9

Frelich LE (2020). Boreal and Taiga Biome. In: Goldstein MI, DellaSala DA (Eds). Encyclopedia of the World’s Biomes. Elsevier pp 103-115. https://doi.org/10.1016/B978-0-12-409548-9.11926-8

Fridman J, Holm S, Nilsson M, Nilsson P, Ringvall AH, Ståhl G (2014). Adapting National Forest Inventories to changing requirements – the case of the Swedish National Forest Inventory at the turn of the 20th century, Vol 48. https://doi.org/doi:10.14214/sf.1095

Gaem PH, Andrade A, Mazine FF, Vicentini A (2022). Tree species delimitation in tropical forest inventories: Perspectives from a taxonomically challenging case study. Forest Ecology and Management 505:119900. https://doi.org/10.1016/j.foreco.2021.119900

Galeote-Leyva B, Valdez-Lazalde JR, Ángeles-Pérez G, De los Santos-Posadas HM, Romero Padilla JM (2022). Inventario forestal asistido por LIDAR: efecto de la densidad de retornos y el diseño de muestreo sobre la precision [LIDAR-Assisted forest inventory: Effect of return density and sampling design on accuracy]. Madera y Bosques 28(2):e2822330. https://doi.org/10.21829/myb.2022.2822330

Galván-Moreno VS, Olivas-García JM, Rascón-Solano J, Hernández-Salas J (2023). Evaluation of two sampling methods for even-age Pinus forest in northern Mexico. Notulae Scientia Biologicae 15(2):11564. https://doi.org/10.55779/nsb15211564

Gerhold P, Price JN, Püssa K, Kalamees R, Aher K, Kaasik A, Pärtel M (2013). Functional and phylogenetic community assembly linked to changes in species diversity in a long-term resource manipulation experiment. Journal of Vegetation Science 24(5):843-852. https://doi.org/10.1111/jvs.12052

Giri C (2016). Observation and monitoring of mangrove forests using remote sensing: Opportunities and challenges. Remote Sensing 8(9):783. https://doi.org/10.3390/rs8090783

Goodbody TRH, Coops NC, Marshall PL, Tompalski P, Crawford P (2017). Unmanned aerial systems for precision forest inventory purposes: A review and case study. The Forestry Chronicle 93(01):71-81. https://doi.org/10.5558/tfc2017-012

Gregoire TG, Ståhl G, Næsset E, Gobakken T, Nelson R, Holm S (2011). Model-assisted estimation of biomass in a LiDAR sample survey in Hedmark County, Norway. Canadian Journal of Forest Research 41(1):83-95. https://doi.org/10.1139/x10-195

Hannah L, David L, Charles H, Carr JL, Ali L (1994). A preliminary inventory of human disturbance of world ecosystems. Ambio 23(4/5):246-250. http://www.jstor.org/stable/4314213

Haywood A, Mellor A, Stone C (2016). A strategic forest inventory for public land in Victoria, Australia. Forest Ecology and Management 367:86-96. https://doi.org/10.1016/j.foreco.2016.02.026

Hernandez-Alvarez E, Pelz DR, Carlos R-F (2006). Inventorying and monitoring of tropical dry forests tree diversity in Jalisco, Mexico using a Geographical Information System. Research and Development pp 638-648. https://www.fs.usda.gov/research/treesearch/26551

Hilmers T, Biber P, Knoke T, Pretzsch H (2020). Assessing transformation scenarios from pure Norway spruce to mixed uneven-aged forests in mountain areas. European Journal of Forest Research 139(4):567-584. https://doi.org/10.1007/s10342-020-01270-y

Hitimana J, Ole Kiyiapi JL, Bekuta BK (2019). Efficient protocol of complete inventory for tree regeneration and recruitment studies over one hectare in selected tropical natural forests, Kenya. Repositorio Dspace 6(3):376-392. https://doi.org/10.22271/tpr.2019.v6.i3.047

Iles K (2003). A sampler of inventory topics. Kim Iles and Associates, Nanaimo, BC.

Jones AR, Raja Segaran R, Clarke KD, Waycott M, Goh WSH, Gillanders BM (2020). Estimating mangrove tree biomass and carbon content: A comparison of forest inventory techniques and drone imagery [Original Research]. Frontiers in Marine Science 6. https://doi.org/10.3389/fmars.2019.00784

Kauffman JB, Donato DC, Adame MF (2013). Protocolo para la medición, monitoreo y reporte de la estructura, biomasa y reservas de carbono de los manglares [Protocol for the Measurement, Monitoring, and Reporting of Mangrove Structure, Biomass, and Carbon Reserves] Vol 117, Cifor.

Kenning RS, Ducey MJ, Brissette JC, Gove JH (2005). Field efficiency and bias of snag inventory methods. Canadian Journal of Forest Research 35(12):2900-2910. https://doi.org/10.1139/x05-207

Kiani B, Fallah A, Tabari M, Hosseini SM, Parizi M (2013). A comparison of distance sampling methods in Saxaul (Halloxylon ammodendron CA Mey Bunge) Shrub-Lands. Polish Journal of Ecology 61(2):207-219.

Kleinn C, Bhandari N, Fehrmann L (2015). Observations and measurements. In: Knowledge reference for national forest assessments. Food and Agriculture Organization of the United Nations, Rome pp 41-52. https://www.fao.org/3/i4822e/i4822e.pdf

Knapp N, Huth A, Kugler F, Papathanassiou K, Condit R, Hubbell SP, Fischer R (2018). Model-Assisted Estimation of Tropical Forest Biomass Change: A Comparison of Approaches. Remote Sensing 10(5):731. https://www.mdpi.com/2072-4292/10/5/731

Kristensen T, Næsset E, Ohlson M, Bolstad PV, Kolka R (2015). Mapping above-and below-ground carbon pools in boreal forests: The case for airborne lidar. PLoS ONE 10(10):e0138450. https://doi.org/10.1371/journal.pone.0138450

Kuliešis A, Tomter SM, Vidal C, Lanz A (2016). Estimates of stem wood increments in forest resources: comparison of different approaches in forest inventory: consequences for international reporting: case study of European forests. Annals of Forest Science 73(4):857-869. https://doi.org/10.1007/s13595-016-0559-0

Leak WB, Yamasaki M, Holleran R (2014). Silvicultural guide for northern hardwoods in the northeast. General Technical Report. Northern Research Station NRS-132. Newtown Square, PA: US Department of Agriculture, Forest Service. https://doi.org/10.2737/NRS-GTR-132

Leiter M, Hasenauer H (2023). Continuous cover forestry: Which sampling method should be used to ensure sustainable management? Trees, Forests and People 13:100419. https://doi.org/10.1016/j.tfp.2023.100419

Liang X, Kankare V, Hyyppä J, Wang Y, Kukko A, Haggrén H, Yu X, Kaartinen H, Jaakkola A, Guan F, Holopainen M, Vastaranta M (2016). Terrestrial laser scanning in forest inventories. ISPRS Journal of Photogrammetry and Remote Sensing 115:63-77. https://doi.org/10.1016/j.isprsjprs.2016.01.006

Lopez‐Gonzalez G, Lewis SL, Burkitt M, Phillips OL (2011). ForestPlots.net: a web application and research tool to manage and analyse tropical forest plot data. Journal of Vegetation Science 22(4):610-613. https://doi.org/10.1111/j.1654-1103.2011.01312.x

Lupi C, Larocque GR, DesRochers A, Labrecque M, Mosseler A, Major J, Beaulieu J, Tremblay F, Gordon AM, Thomas BR, Vézina A, Bouafif H, Cormier D, Sidders D, Krygier R (2017). Biomass from young hardwood stands on marginal lands: Allometric equations and sampling methods. Biomass and Bioenergy 98:172-181. https://doi.org/10.1016/j.biombioe.2017.01.023

Malhi Y, Girardin C, Metcalfe DB, Doughty CE, Aragão LEOC, Rifai SW, Oliveras I, Shenkin A, Aguirre-Gutiérrez J, Dahlsjö CAL, Riutta T, Berenguer E, Moore S, Huasco WH, Salinas N, da Costa ACL, Bentley LP, Adu-Bredu S, Marthews TR, Meir P, Phillips OL (2021). The Global Ecosystems Monitoring network: Monitoring ecosystem productivity and carbon cycling across the tropics. Biological Conservation 253:108889. https://doi.org/10.1016/j.biocon.2020.108889

Maltamo M, Packalen P (2014). Species-specific management inventory in Finland. In: Maltamo M, Næsset E, Vauhkonen J (Eds). Forestry Applications of Airborne Laser Scanning. Managing Forest Ecosystems, Vol 27. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-8663-8_12

Margolis HA, Nelson RF, Montesano PM, Beaudoin A, Sun G, Andersen H-E, Wulder MA (2015). Combining satellite lidar, airborne lidar, and ground plots to estimate the amount and distribution of aboveground biomass in the boreal forest of North America. Canadian Journal of Forest Research 45(7):838-855. https://doi.org/10.1139/cjfr-2015-0006

McRoberts RE (2010). The effects of rectification and Global Positioning System errors on satellite image-based estimates of forest area. Remote Sensing of Environment 114(8):1710-1717. https://doi.org/10.1016/j.rse.2010.03.001

McRoberts RE (2012). Estimating forest attribute parameters for small areas using nearest neighbors techniques. Forest Ecology and Management 272:3-12. https://doi.org/10.1016/j.foreco.2011.06.039

McRoberts RE, Bechtold WA, Patterson PL, Scott CT, Reams GA (2005). The enhanced forest inventory and analysis program of the USDA forest service: Historical perspective and announcement of statistical documentation. Journal of Forestry 103(6):304-308. https://doi.org/10.1093/jof/103.6.304

McRoberts RE, Tompo EO, Vibrans AC, de Freitas JV (2013). Design considerations for tropical forest inventories. Pesquisa Florestal Brasileira 33(74):189-202. https://doi.org/10.4336/2013.pfb.33.74.430

McRoberts RE, Tomppo EO, Næsset E (2010). Advances and emerging issues in national forest inventories. Scandinavian Journal of Forest Research 25(4):368-381. https://doi.org/10.1080/02827581.2010.496739

Mirzaei M, Bonyad AE (2016). Comparison of fixed area and distance sampling methods in open forests: case study of Zagros Forest, Iran. Journal of Forestry Research 27(5):1121-1126. https://doi.org/10.1007/s11676-016-0239-9

Mohren GMJ, Hasenauer H, Köhl M, Nabuurs GJ (2012). Forest inventories for carbon change assessments. Current Opinion in Environmental Sustainability 4(6):686-695. https://doi.org/10.1016/j.cosust.2012.10.002

Mora-Espinoza JA, Peñalver-Romeo A, Aguilar-Torres FJ, Rivas-Barzola JR, Triana-Tomalá Á (2020). Método de muestreo angular para el inventario de plantaciones forestales de teca (Tectona grandis L. f.) [Angular Sampling Method for Inventory of Teak (Tectona grandis L. f.) Plantations]. Revista Chapingo Serie Ciencias Forestales y del Ambiente 26(3):419-432. https://doi.org/10.5154/r.rchscfa.2019.11.081

Muhsoni FF, Sambah AB, Mahmudi M, Wiadnya DGR (2018). Comparison of different vegetation indices for assessing mangrove density using sentinel-2 imagery. GEOMATE Journal 14(45):42-51. https://geomatejournal.com/geomate/article/view/2037

Næsset E, Bollandsås OM, Gobakken T, Gregoire TG, Ståhl G (2013). Model-assisted estimation of change in forest biomass over an 11 year period in a sample survey supported by airborne LiDAR: A case study with post-stratification to provide “activity data”. Remote Sensing of Environment 128:299-314. https://doi.org/10.1016/j.rse.2012.10.008

Nelson R, Gobakken T, Næsset E, Gregoire TG, Ståhl G, Holm S, Flewelling J (2012). Lidar sampling – Using an airborne profiler to estimate forest biomass in Hedmark County, Norway. Remote Sensing of Environment 123:563-578. https://doi.org/10.1016/j.rse.2011.10.036

Nunes A, Tapia S, Pinho P, Correia O, Branquinho C (2015). Advantages of the point-intercept method for assessing functional diversity in semi-arid areas [Advantages of the point-intercept method for assessing functional diversity in semi-arid areas] [Research Articles]. iForest - Biogeosciences and Forestry 8(4):471-479. https://doi.org/10.3832/ifor1261-007

Parrotta JA (1992). The role of plantation forests in rehabilitating degraded tropical ecosystems. Agriculture, Ecosystems and Environment 41(2):115-133. https://doi.org/10.1016/0167-8809(92)90105-K

Pece M, Ríos N, Gaillard de Benítez C, Acosta V (2000). Comparación entre métodos de muestreo [Comparison Between Sampling Methods]. Investigación Agraria. Sistemas y Recursos Forestales 9(1):45-58.

Picard N, Gamarra JGP, Birigazzi L, Branthomme A (2018). Plot-level variability in biomass for tropical forest inventory designs. Forest Ecology and Management 430:10-20. https://doi.org/10.1016/j.foreco.2018.07.052

Ploton P, Mortier F, Barbier N, Cornu G, Réjou-Méchain M, Rossi V, Alonso A, Bastin J-F, Bayol N, Bénédet F, Bissiengou P, Chuyong G, Demarquez B, Doucet J-L, Droissart V, Kamdem NG, Kenfack D, Memiaghe H, Moses L, Sonké B, Texier N, Thomas D, Zebaze D, Pélissier R, Gourlet-Fleury S (2020). A map of African humid tropical forest aboveground biomass derived from management inventories. Scientific Data 7(1):221. https://doi.org/10.1038/s41597-020-0561-0

Pucher C, Neumann M, Hasenauer H. An improved forest structure data set for Europe. Remote Sensing 14(2):395. https://doi.org/10.3390/rs14020395

Romijn E, Lantican CB, Herold M, Lindquist E, Ochieng R, Wijaya A, Murdiyarso D, Verchot L (2015). Assessing change in national forest monitoring capacities of 99 tropical countries. Forest Ecology and Management 352:109-123. https://doi.org/10.1016/j.foreco.2015.06.003

Silva LB, Alves M, Elias RB, Silva L (2017). Comparison of tree sampling methods in Pittosporum undulatum invaded woodlands. International Journal of Forestry Research 2818132. https://doi.org/10.1155/2017/2818132

Strunk J, Temesgen H, Andersen H-E, Flewelling JP, Madsen L (2012). Effects of lidar pulse density and sample size on a model-assisted approach to estimate forest inventory variables. Canadian Journal of Remote Sensing 38(5):644-654. https://doi.org/10.5589/m12-052

Suganuma H, Abe Y, Taniguchi M, Tanouchi H, Utsugi H, Kojima T, Yamada K (2006). Stand biomass estimation method by canopy coverage for application to remote sensing in an arid area of Western Australia. Forest Ecology and Management 222(1):75-87. https://doi.org/10.1016/j.foreco.2005.10.014

Tinkham WT, Mahoney PR, Hudak AT, Domke GM, Falkowski MJ, Woodall CW, Smith AMS (2018). Applications of the United States Forest Inventory and analysis dataset: a review and future directions. Canadian Journal of Forest Research 48(11):1251-1268. https://doi.org/10.1139/cjfr-2018-0196

Tompalski P, Coops NC, White, JC, Wulder MA (2016). Enhancing forest growth and yield predictions with airborne laser scanning data: Increasing spatial detail and optimizing yield curve selection through template matching. Forests 7(11):255. https://doi.org/10.3390/f7110255

Tompo E, Heikkinen J, Henttonen HM, Ihalainen A, Katila M, Mäkelä H, Tuomainen T, Vainikainen N (2011). Designing and conducting a forest inventory - case: 9th National Forest Inventory of Finland (Vol XII). https://doi.org/10.1007/978-94-007-1652-0

Tomppo E, Gschwantner T, Lawrence M, McRoberts RE, Gabler K, Schadauer K, Vidal C, Lanz A, Ståhl G, Cienciala E (2010). National forest inventories. Pathways for Common Reporting. European Science Foundation 1:541-553.

Tomppo E, Olsson H, Ståhl G, Nilsson M, Hagner O, Katila M (2008). Combining national forest inventory field plots and remote sensing data for forest databases. Remote Sensing of Environment 112(5):1982-1999. https://doi.org/https://doi.org/10.1016/j.rse.2007.03.032

Treitz P, Lim K, Woods M, Pitt D, Nesbitt D, Etheridge D (2012). LiDAR Sampling density for forest resource inventories in Ontario, Canada. Remote Sensing 4(4):830-848. https://doi.org/10.3390/rs4040830

Vandendaele B, Fournier RA, Vepakomma U, Pelletier G, Lejeune P, Martin-Ducup O (2021). Estimation of northern hardwood forest inventory attributes using UAV Laser Scanning (ULS): Transferability of laser scanning methods and comparison of automated approaches at the tree- and stand-level. Remote Sensing 13(14):2796. https://www.mdpi.com/2072-4292/13/14/2796

Vidal C, Alberdi IA, Hernández-Mateo L, Redmond JJ (2016). National Forest Inventories (Vol XXXII). Springer Cham. https://doi.org/https://doi.org/10.1007/978-3-319-44015-6

Wang Y, Pyörälä J, Liang X, Lehtomäki M, Kukko A, Yu X, Kaartinen H, Hyyppä J (2019). In situ biomass estimation at tree and plot levels: What did data record and what did algorithms derive from terrestrial and aerial point clouds in boreal forest. Remote Sensing of Environment 232:111309. https://doi.org/https://doi.org/10.1016/j.rse.2019.111309

White JC, Coops NC, Wulder MA, Vastaranta M, Hilker T, Tompalski P (2016). Remote sensing technologies for enhancing forest inventories: A review. Canadian Journal of Remote Sensing 42(5):619-641. https://doi.org/10.1080/07038992.2016.1207484

Wittke S, Yu X, Karjalainen M, Hyyppä J, Puttonen E (2019). Comparison of two-dimensional multitemporal Sentinel-2 data with three-dimensional remote sensing data sources for forest inventory parameter estimation over a boreal forest. International Journal of Applied Earth Observation and Geoinformation 76:167-178. https://doi.org/https://doi.org/10.1016/j.jag.2018.11.009

Woods M, Pitt D, Penner M, Lim K, Nesbitt D, Etheridge D, Treitz P (2011). Operational implementation of a LiDAR inventory in Boreal Ontario. The Forestry Chronicle 87(4):512-528. https://doi.org/10.5558/tfc2011-050

Zhu X, Zhang J (2009). Quartered neighbor method: A new distance method for density estimation. Frontiers of Biology in China 4(4):574-578. https://doi.org/10.1007/s11515-009-0039-0

Downloads

Published

2024-07-16

How to Cite

GALVÁN-MORENO, V. S., AGUIRRE-CALDERÓN, O. A., ALANÍS-RODRÍGUEZ, E., JIMÉNEZ-PÉREZ, J., CUÉLLAR-RODRÍGUEZ, L. G., QUIÑONEZ-BARRAZA, G., & RASCÓN-SOLANO, J. (2024). Forest sampling techniques in different types of vegetation applying plot sampling, non-plot sampling, and remote sensing. Nova Geodesia, 4(3), 202. https://doi.org/10.55779/ng43202

Issue

Section

Review articles